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Abstract
We derive the quantum rate equations for an Aharonov–Bohm interferometer
with two vertically coupled quantum dots embedded in each of two arms
by means of the nonequilibrium Green function in the sequential tunnelling
regime. Based on these equations, we investigate time-dependent resonant
tunnelling under a small amplitude irradiation and find that the resonant photon-
assisted tunnelling peaks in photocurrent demonstrate a combination behaviour
of Fano and Lorentzian resonances due to the interference effect between the
two pathways in this parallel configuration, which is controllable by threading
the magnetic flux inside this device.

1. Introduction

The investigation of quantum coherence in mesoscopic systems has been the subject of
considerable interest in solid state physics during recent years. In interference experiments
with a quantum dot (QD) embedded in one arm of an Aharonov–Bohm (AB) ring, the
tunnelling through a QD was proved to be coherent by detecting the flux-periodic current
oscillations [1]. More recently, Holleitner et al [2] extended this idea to measure the AB
oscillations of the mesoscopic ring containing two coupled QDs inserted in each of the
two arms. Furthermore, this parallel-coupled QD structure has been investigated in the
Kondo regime, and an observation of the transition between different quantum states has
been reported [3, 4]. Clearly, the possibility to manipulate each of the QDs separately
and the application of the magnetic flux provide more controllable parameters for designing
the transport properties. This has been discussed in several theoretical works for stationary
transport by the nonequilibrium Green function (GF) [5–9].
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On the other hand, time-dependent tunnelling through coupled QDs in series has received
much attention both theoretically and experimentally. A theoretical study of the photon-
assisted tunnelling (PAT) in double QDs given by Stoof and Nazarov [10] and Hazelzet et al
[11], based on the quantum rate equation approach, predicted that the photoresponse of the
system exhibits satellite resonance peaks due to PAT processes which involve the emission
or absorption of one photon to match the energy difference between the discrete states of the
two QDs. van der Wiel et al [12] measured the PAT current through weakly coupled QDs and
discovered clearly the predicted extra resonance peaks under microwave irradiation. Motivated
by this perfect match between the theory and experiments, we intend, in this paper, to study the
PAT in parallel-coupled QDs by the quantum rate equations approach. In this configuration,
the additional bridges between the QDs and leads allow the electron wavefunction to propagate
along different pathways, then lead to an interference effect between them, which is displayed
by the fundamental AB oscillation in the presence of a magnetic field. Therefore, the central
point of our study is to explore how the interference influences the photoresponse of the
parallel-coupled QDs.

The rest of the paper is organized as follows. First, in the following section, we establish
the quantum rate equations for this system in the presence of a magnetic field by employing
the nonequilibrium Green function [13, 14]4. Then in section 3, we calculate the current as a
function of magnetic fluxes, and study the quantum dynamics of this system. The spectrum
investigation in [9] pointed out that increasing strength of the additional bridges causes the
total localization of the antibonding state due to the perfect destructive interference, and as a
consequence the transport characteristic of the device reduces approximately to a single QD.
In this paper we restrict our interest to the regime where there are two distinctly resolved peaks
in the density of states spectra and both the bonding and antibonding states can contribute to
transport. Our numerical results show that the current in this regime still keeps the oscillation
behaviour with magnetic flux but the period changes from 2π to 4π due to the interdot coupling.
The temporal investigation of the electron occupation probabilities in the two QDs shows that
the conventional oscillation behaviour in a two-level system can be destroyed by the additional
bridges connecting the two QDs and two leads, and it can be recovered by applying a nonzero
magnetic flux. Also in this section we study in detail the photoresponse of the system subject to
a small irradiation and predict novel enclosed magnetic flux-controlled photon-assisted peaks
in tunnelling current, which can be attributed to the interference between the two pathways of
electrons going through in this system. Finally, a summary is given in section 4.

2. Model and formulation

We consider the parallel-coupled interacting QD interferometer connected to two normal leads
as depicted in figure 1. Only one bare energy level in each dot is involved in transport. The
intradot electron–electron Coulomb interactions are assumed to be infinite but the interdot
interaction U is finite. Namely, the state of two electrons occupying the same QD is forbidden
but two electrons dwelling in different QDs is permitted.

For the sake of simplicity, we abandon the spin because transport through this system
is spin independent. Therefore, the available states and the corresponding energies for the
interferometer with two embedded QDs are the following:

(1) the whole system is empty, |0〉1|0〉2, and the energy is zero;
(2) the first QD is singly occupied, |1〉1|0〉2, and the energy is ε1;

4 Note that this paper gives the temperature- and bias-voltage-dependent quantum rate equations for parallel double
QDs without interdot hopping but it is a facile task to include this term in the general rate equations.
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Figure 1. Parallel-coupled quantum dot Aharonov–Bohm interferometer.

(3) the second QD is singly occupied, |0〉1|1〉2, and the energy is ε2;
(4) both of the QDs are singly occupied, |1〉1|1〉2, and the energy is ε1 + ε2 + U .

We assign these Dirac brackets as operators: the slave-boson operators e† = |0〉1|0〉2,
d† = |1〉1|1〉2 and the pseudo-fermion operators f †

1 = |1〉1|0〉2, f †
2 = |0〉1|1〉2. Obviously, the

explicit (anti)communicators of these auxiliary particles are [13]

ee† = 1, dd† = 1, fi f †
j = δi j,

ed† = e f †
j = f j e

† = f j d
† = de† = d f †

j = 0,
(1)

in association with the completeness relation

e†e + d†d + f †
1 f1 + f †

2 f2 = 1. (2)

The density matrix elements are expressed as ρ00 = |0〉1|0〉2 2〈0| 1〈0| = e†e, ρ11 =
|1〉1|0〉2 2〈0| 1〈1| = f †

1 f1, ρ22 = |0〉1|1〉2 2〈1| 1〈0| = f †
2 f2, ρdd = |1〉1|1〉2 2〈1| 1〈1| = d†d ,

and ρ12 = |0〉1|1〉2 2〈0| 1〈1| = f †
2 f1. In terms of these slave-particle operators, the Hamiltonian

for this system can be written as

H =
∑
η,k

εηkc†
ηkcηk + ε1 f †

1 f1 + ε2 f †
2 f2 + tc( f †

1 f2 + f †
2 f1) + (2εd + U)d†d

+
∑

k

[VL1eiϕ/4c†
Lk(e

† f1 + f †
2 d) + H.c.]

+
∑

k

[VL2e−iϕ/4c†
Lk(e

† f2 + f †
1 d) + H.c.]

+
∑

k

[VR1e−iϕ/4c†
Rk(e

† f1 + f †
2 d) + H.c.]

+
∑

k

[VR2eiϕ/4c†
Rk(e

† f2 + f †
1 d) + H.c.], (3)

where c†
ηk (cηk) are the creation (annihilation) operators for electrons with moment k,and energy

εηk in lead η (η = L, R). Vη j denotes the hopping matrix element between the dot and the
lead and ϕ ≡ 2π�/�0 accounts for the enclosed magnetic flux inside the AB interferometer
(�0 = h/e is the flux quantum). tc is the interdot hopping coupling.

We evaluate the statistical expectations of the rate of change of the density matrix elements
ρi j with Hamiltonian (3) and the modified quantization equation (1). After tedious but
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straightforward calculations, we obtain

ρ̇00 = 〈i[H, e†e]〉 = 1

2π

∑
k

{
[V†

eG<
k,e(t, t)]11 − [G<

e,k(t, t)Ve]11 + [V†
eG<

k,e(t, t)]22

− [G<
e,k(t, t)Ve]22

}
, (4)

ρ̇i i = 〈i[H, f †
i fi ]〉 = 1

2π

∑
k

{
[G<

e,k(t, t)Ve]ii − [V†
eG<

k,e(t, t)]ii + [V†
dG<

k,d(t, t)]ii

− [G<
d,k(t, t)Vd ]ii

}
+ itc(ρi ī − ρī i), (5)

ρ̇dd = 〈i[H, d†d]〉 = 1

2π

∑
k

{
[G<

d,k(t, t)Vd ]11 − [V†
dG<

k,d (t, t)]11 + [G<
d,k(t, t)Vd ]22

− [V†
dG<

k,d (t, t)]22
}
, (6)

ρ̇12 = 〈i[H, f †
2 f1]〉 = 1

2π

∑
k

{
[G<

e,k(t, t)Ve]12 − [V†
eG<

k,e(t, t)]12 + [V†
dG<

k,d (t, t)]21

− [G<
d,k(t, t)Vd ]21

}
+ i(ε2 − ε1)ρ12 + itc(ρ11 − ρ22), (7)

where the statistical expectations involve the Fourier transformations of the time-diagonal
parts of the matrix correlation functions in 2 × 2 space [G<

e,k(t, t ′)]i j ≡ i〈c†
jk(t

′)e†(t) fi (t)〉,
[G<

d,k(t, t ′)]i j ≡ i〈c†
jk(t

′) f †
i (t)d(t)〉, [G<

k,e(t, t ′)]i j ≡ i〈 f †
j (t ′)e(t ′)cik(t)〉, and [G<

k,d (t, t ′)]i j ≡
i〈d†(t ′) f j (t ′)cik(t)〉. With the help of the Langreth analytic continuation rules [15], we can
relate these hybrid Green functions to the dressed Green functions of the central region:

G<
k,e/d (t, t ′) =

∫
dt1 [gr

k(t, t1)Ve/d G<
e/d(t1, t ′) + g<

k (t, t1)Ve/dGa
e/d(t1, t ′)],

G<
e/d,k(t, t ′) =

∫
dt1 [Gr

e/d(t, t1)V
†
e/d g<

k (t1, t ′) + G<
e/d(t, t1)V

†
e/d ga

k (t1, t ′)],
(8)

where Ve and Vd are two 2 × 2 matrixes of the hopping elements defined by

Ve =
(

VL1eiϕ/4 VL2e−iϕ/4

VR1e−iϕ/4 VR2eiϕ/4

)
,

Vd =
(

VL2e−iϕ/4 VL1eiϕ/4

VR2eiϕ/4 VR1e−iϕ/4

)
, (9)

and [gr,a,<,>
k (t, t ′)]i j = δi j g

r,a,<,>
ik (t, t ′) are the exact Green functions of the i th lead without

coupling to the device. These retarded (advanced) and lesser (greater) GFs for the central region
are defined as Gr(a)

oi j (t, t ′) ≡ ±iθ(±t ∓ t ′)〈{Oi (t), O†
j (t

′)}〉, G<
oi j(t, t ′) ≡ i〈O†

j (t
′)Oi (t)〉, and

G>
oi j(t, t ′) ≡ −i〈Oi (t)O†

j (t
′)〉 with O j = e† f j if o = e and O j = f †

j d if o = d .
In the following derivation we perform a ‘gradient expansion’ of equation (8), which is

first introduced by Davies et al to get the rate equation for resonant tunnelling in the sequential
regime [16]. First define centre-of-mass and relative times by T = (t + t ′)/2 and t̄ = (t − t ′)/2.
Then we assume that functions vary rapidly in the relative time t̄ but only slowly in the centre-
of-mass time T . Finally, we take a Fourier transform from t̄ to ω, and the GF G(t, t ′) in
equation (8) becomes G(ω, T ). According to [16], the lowest-order gradient expansion is a
good approximation for sequential resonant tunnelling. Therefore, we just retain the first term
in the gradient expansion of the GFs G(ω, T ) in equation (8) and substitute these GFs and the
hopping matrixes Ve/d into equations (4)–(7). It is noted that the equal time in equations (4)–
(7) means t̄ = 0 or an integral over all ω. Under the weak coupling (dot–lead tunnelling
and interdot hopping) assumption and slowly varying in time T , the GFs in the isolated two-
QD system can be expressed in terms of a spectrum representation [13, 14] (see footnote 4).
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Inserting these GFs into the Fourier forms of equations (8), we then obtain the final quantum
rate equations in the sequential tunnelling regime. Because our interest is focused on studying
the quantum dynamics and photoresponse of this interferometer at zero temperature and large
bias voltage, we do not intend to give the general expressions but interested readers could refer
to our recent paper [14] (see footnote 4). Finally, at zero temperature and large bias voltage,
the quantum rate equations are written as

ρ̇00 = 
R1ρ11 + 
R2ρ22 − (
L1 + 
L2)ρ00 + [
R12e−iϕ/2ρ12 + H.c.], (10)

ρ̇11 = 
L1ρ00 + 
̃R2ρdd − (
R1 + 
̃L2)ρ11 + itc(ρ12 − ρ21)

− [ 1
2 (
R12e−iϕ/2 + 
̃L12eiϕ/2)ρ12 + H.c.], (11)

ρ̇22 = 
L2ρ00 + 
̃R1ρdd − (
R2 + 
̃L1)ρ22 + itc(ρ21 − ρ12)

− [ 1
2 (
R12e−iϕ/2 + 
̃L12eiϕ/2)ρ12 + H.c.], (12)

ρ̇dd = 
̃L2ρ11 + 
̃L1ρ22 − (
̃R1 + 
̃R2)ρdd + [
̃L12eiϕ/2ρ12 + H.c.], (13)

ρ̇12 = i(ε2 − ε1)ρ12 + itc(ρ11 − ρ22) + 
L12e−iϕ/2ρ00 + 
̃R12eiϕ/2ρdd

− 1
2 (
R1 + 
R2 + 
̃L1 + 
̃L2)ρ12 − 1

2 (
R12eiϕ/2 + 
̃L12e−iϕ/2)(ρ11 + ρ22), (14)

along with the normalization relation ρ00 +ρ11 +ρ22 +ρdd = 1 due to constraint equation (2) and
ρ21 = ρ∗

12, with the definitions 
ηi = 2π
∑

k |Vηi |2δ(ω−εηk) denoting the strength of coupling
between the i th QD level and the lead η. Namely, 
Li (
Ri ) here describes the tunnelling rate
of electrons into (out from) the i th QD when the other QD is empty. In contrast, 
̃Li (
̃Ri )
describes the tunnelling rate of electrons into (out from) the i th QD, when the other QD is
already occupied by an electron, revealing the modification of the corresponding rates due to
the Coulomb repulsion between the two QDs. The interference in tunnelling events through the
different pathways is explicitly described by 
ηi j and 
̃ηi j for the singly occupied channel and
doubly occupied channel, respectively, with the definitions 
ηi j = 2π

∑
k Vηi Vη jδ(ω − εηk).

These tunnelling parameters are taken as constant under the wide band limit. In addition, the
contribution of the two leads is indeed negative to the nondiagonal density matrix element’s
dynamic equation, leading to damping of the quantum superposition. It is obvious that these
damping terms are different from the series-coupled QDs [10, 11, 19].

Actually, similar equations have already been developed for this system by using other
schemes [17, 18]. Jiang and co-workers [17] applied the Gurvitz wavefunction method [19] to
derive the modified rate equations and studied the temporary dynamics. However, it should be
noted that their equations are different from ours for the nondiagonal density matrix element
equation (14). Marquardt and Bruder [18] started from the von Neumann equation of the
reduced density matrix and obtained the rate equations at a finite temperature. They studied
the dephasing in sequential tunnelling due to electron–phononinteraction for the similar device
without interdot hopping. Their equations at zero temperature coincide with ours in the absence
of interdot hopping.

The particle current Iη flowing from lead η to the interferometer can be evaluated from
the rate of change of the electron number operator Nη(t) = ∑

k c†
ηk(t)cηk(t) of lead η [20]:

Iη(t) = − e

h̄

〈
dNη

dt

〉
= −i

e

h̄

〈[
H,

∑
k

c†
ηk(t)cηk(t)

]〉
. (15)

Ultimately, the current IL/R can be expressed in terms of the GFs:

IL/R = ie
∫

dω

2π

∑
k

{
G<

k,e(ω)V†
e − VeG<

e,k(ω) + G<
k,d (ω)V†

d − VdG<
d,k(ω)

}
11/22. (16)

Under the weak coupling approximation, it becomes

IL/e = −(
L1 + 
L2)ρ00 − 
̃L2ρ11 − 
̃L1ρ22 − 
̃L12(e
iϕ/2ρ12 + e−iϕ/2ρ21). (17)
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Figure 2. The calculated stationary current I as a function of the magnetic flux ϕ for different
interdot couplings t = 0, 0.01, 0.1, and 1 with 
 = 0.2 and 
′ = 0.1
.

The final term in the above expression comes from the contribution of the interference between
the upper and lower pathways.

3. Calculations and discussion

3.1. Dc current and quantum dynamics

In this section, we first calculate the current through the parallel-coupled QDs in the presence
of magnetic field and then study the quantum dynamical behaviour of this system. The density
of states and linear conductance of this system without the Coulomb interaction have been
explored in detail in the absence of magnetic flux in the literature [8, 9]. It is found that
when the system changes from a configuration in series to a completely symmetrical parallel
geometry, the tunnelling through the antibonding state is totally suppressed due to the perfect
destructive quantum interference between the different pathways through the system [9].
With this point of view, we limit our investigation to the case of an asymmetric parallel
configuration to guarantee that both the bonding and antibonding states have a contribution
to the transport, in order to demonstrate the effect of interference on the photoresponse
clearly. Here we assume the tunnelling rates 
L1 = 
R2 = 
̃L1 = 
̃R2 = 
 = 0.2 and

L2 = 
R1 = 
̃L2 = 
̃R1 = 
′ � 0.3
. Moreover, we have 
L12 = 
R12 = √



′.
Figure 2 displays the stationary current calculated from equation (17) as a function of the

renormalized magnetic flux ϕ for different interdot couplings under the condition 
′ = 0.1
.
It is clear that in the absence of the interdot coupling, tc = 0, the current I exhibits periodic
oscillation with a period of 2π . The current peaks appear at the phases of (2n + 1)π (n is an
integer number), and the current nearly vanishes at the phases of 2nπ . This is the main feature
of the conventional AB effect. However, when the interdot coupling turns on, the periodicity
of the AB oscillation becomes 4π . In the new AB oscillation pattern, the first current peak
also locates at the phase of π . But the positions of the current valleys move from the original
phases of 0 and 2π to the phases of −π and 3π . A similar characteristic has also been pointed
out in [17].

We then study the quantum dynamical behaviour of the system. In calculation, we assume
that the system initially occupies the empty state ρ00 = 1. Figure 3 shows the time evolutions
of the electron probability densities ρ11 and ρ22 for the states |1〉1|0〉2 and |0〉1|1〉2. In the
absence of the interdot hopping tc = 0, the probability ρ11 is nearly equal to unity, while ρ22 is
nearly zero after a long time, because the higher ‘injection’ rate to the first QD makes electrons
occupy this QD, and the higher ‘escape’ rate of the second QD leads to no electrons staying at
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Figure 3. The calculated time evolutions of the electron-occupation probabilities in the two QDs
ρ11 (solid curves) and ρ22 (dashed curves): (a)–(d) different interdot couplings tc = 0, 0.01, 0.1,
and 1 with 
′/
 = 0.1; (e)–(g) different ratios of the two tunnelling rates 
′/
 = 0, 0.5, and 1
with tc = 1; (h) 
′/
 = 1 and ϕ = π . The time unit is 1/5
.

all (figure 3(a)). When we turn on the interdot hopping tc, the probability in the second QD ρ22

is greatly enhanced even for very small interdot hopping tc = 0.01 as depicted in figure 3(b). It
is also shown that these probabilities display temporal oscillations at small time, meaning that
the electron vibrates back and forth between the two QDs. Moreover, the oscillation period is
shortened by raising the interdot hopping tc. This is the well known small t oscillation behaviour
in the two-level system: ρ11 ∼ cos2(tct) and ρ22 ∼ sin2(tct). However, we will find out some
new characteristics in this small t oscillation for the parallel-coupled QDs. As indicated in
figures 3(d)–(f), the rising tunnelling rate of the additional pathway 
′ gradually destroys the
oscillations of the two probabilities due to the increasing quantum interference between the
additional pathway and the original one. For equal tunnelling rates of the two pathways, ρ11

and ρ22 are of course equal and show no oscillations (figure 3(g)). This is a consequence of
perfect destructive quantum interference between the different pathways through the parallel-
coupled QDs. Furthermore, it is already known that applying the magnetic field will change
the scattering phase shift in every QD, and then vary the interference patterns. As a result, the
totally vanishing small t oscillations can be recovered to some extent by threading a magnetic
flux, which can be observed in figure 3(h) for a normalized magnetic flux ϕ = π .

3.2. Photoresponse

In this subsection, we study the time-dependent tunnelling through the AB interferometer
in the nonlinear regimes. We assume that a time-dependent oscillation signal is applied
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to the two interacting QDs, so that the bare energy detuning becomes time dependent,
ε2 − ε1 = ε0 + δ cos �t , where δ is the amplitude and � the frequency of the externally
applied signal. In the following, we use the approach developed by Stoof and Nazarov [10] to
investigate the limiting case of a slight amplitude, δ 	 �,
L/R , the linear photoresponse.

For simplicity, we assume the interdot Coulomb interaction U is infinite, whereas only
one electron can be found inside the system, so ρdd = 0 and all 
̃ are equal to 0. The quantum
rate equations (11)–(14) simplify to

ρ̇11 = 
ρ00 − 
′ρ11 + itc(ρ12 − ρ21) − 1
2 [
R12e−iϕ/2ρ12 + H.c.], (18)

ρ̇22 = 
′ρ00 − 
ρ22 + itc(ρ21 − ρ12) − 1
2 [
R12e−iϕ/2ρ12 + H.c.], (19)

ρ̇12 = i(ε2 − ε1)ρ12 + itc(ρ11 − ρ22) + 
L12e−iϕ/2ρ00 − 1
2 
R12eiϕ/2(ρ11 + ρ22)

− 1
2 (
′ + 
)ρ12, (20)

with ρ00 + ρ11 + ρ22 = 1. Correspondingly, the stationary current simplifies as

IL/e = −(
 + 
′)(1 − ρ11 − ρ22). (21)

We rewrite the simplified quantum rate equations in matrix notation:

∂ρ

∂ t
= (Γ + T + ε0 + δ cos �t)ρ + c, (22)

where ρ = (ρ11, ρ22, ρ12, ρ21)
T, c = [
,
′, 
L12e−iϕ/2, 
L12eiϕ/2]T, and Γ, T, ε0, and δ are

the matrix forms of tunnelling rates, hopping between dots, and time-independent and time-
dependent energy differences corresponding to equations (18)–(20). The stationary solution
of these equations without irradiation is expressed as

ρ(0) = −(Γ + T + ε0)
−1c. (23)

Under the condition of small oscillation amplitude, the time-dependent density matrix elements
can be expanded as

ρ = ρ(0) + ρ(1+)ei�t + ρ(1−)e−i�t + ρ(2), (24)

where ρ(1±) and ρ(2) are the positive (negative) frequency part of the first order correction and
frequency-independent second order correction to the stationary solution ρ(0), respectively.
They are proportional to the small amplitude of the oscillating signal δ. Substituting the above
equation into the time-dependent rate equations and expanding according to the perturbation
parameter δ, therefore, we obtain

ρ(1±) = − 1
2 (Γ + T + ε0 ∓ i�I)−1δρ(0), (25)

ρ(2) = − 1
2 (Γ + T + ε0)

−1δ(ρ(1+) + ρ(1−)), (26)

I being the unit matrix. The first order correction ρ(1±) provides oscillatory terms and has no
contribution to the dc current (time average current) equation (21). The remaining lowest order
contribution of the oscillating signal to the dc current comes from the second order correction
ρ(2). It is called photocurrent Iph:

Iph = (
 + 
′)[ρ(2)

11 + ρ
(2)

22 ]. (27)

In figure 4 we plot the calculated photoresponse stationary current as a function of ε0

and the irradiation frequency � for a given interdot hopping tc = 1. Figure 4(a) displays the
result without the additional pathway 
′ = 0, which is just the coupled QDs in series. So the
characteristic of this figure is the same as figure 2 in [10]:



Time-dependent resonant tunnelling for parallel-coupled double quantum dots 4311

0.5

(a) (b)

(c) (d)

Γ′=0

φ=0

Γ′=0.1Γ
φ=0

0.25

0

0

1

2 Ω/tc

3

4

5

0

1

2

3

4

5

1

0.5

0

4

2

0
ε0/ tc

ε0/ tc ε0/ tc

ε0/ tc
Ω/tc–2

–4

4

2

0

–2

–4

I p
ht

c/
eδ

2

0.5
Γ′=0.1Γ
φ=π

0.25

0

0

1

2 Ω/tc

3

4

5
4

2

0

–2

–4

I p
ht

c/
eδ

2

I p
ht

c/
eδ

2

Γ′=0.1Γ
φ=2π

0

1

2

3

4

5

1

0.5

0

Ω/tc

4

2

0

–2

–4

I p
ht

c/
eδ

2

Figure 4. The normalized photocurrent of the parallel-coupled QDs, as a function of the bare
level difference ε0/tc between the two QDs and the frequency �/tc of the irradiation. (a) The rate

′ = 0 and the renormalized magnetic flux ϕ = 0; (b), (c) 
′/
 = 0.1, the magnetic fluxes ϕ = 0,
π , and 2π .

(This figure is in colour only in the electronic version)

(1) two branches of resonant satellite peaks for ε0 and � satisfying �2 = ε2
0 + 4t2

c (positive
branch for ε0 > 0, negative branch for ε0 < 0), i.e., resonant PAT occurs when the emission

or absorption of one photon can match the renormalized energy difference
√

ε2
0 + 4t2

c of
the two levels;

(2) no satellite peak appearance for the case of frequencies below 2tc.

This is because the condition of resonant PAT is never satisfied due to the lower energy h̄�

of the applied irradiation. They are the two general conditions for occurrence of the resonant
PAT. However, when we switch on the additional pathway with a small rate 
′/
 = 0.1, we
can observe that the photocurrent behaviour is significantly altered as depicted in figures 4(b)
and (c), although the two main characteristics mentioned above keep unchanged. It is clear
in figure 4(b) that the positive branch of the PAT peaks is enhanced but the negative branch
is suppressed nearly to zero amplitude. We attribute this phenomenon to the interference
between the two pathways that electrons can travel through in this new configuration. The
scattering phase shifts are different when electrons pass through the two QDs with different bare
energy levels. Consequently, the positive energy spacing ε0 > 0 leads to constructive quantum
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Figure 5. Evolution of the two satellite peaks for different ratios 
′/
 and different renormalized
magnetic fluxes ϕ. (a) The plots are for 
′/
 = 0, 0.05, 0.1, and 0.25, respectively, at ϕ = 0 and
� = 3tc; (b) the plots are for ϕ/π = 0, 0.5, 1.0, 1.5, and 2.0 at 
′/
 = 0.1 and � = 3tc; (c) the
plots are the same as (b) but for � = 2tc. For the sake of comparison, the result of 
′ = 0 is
denoted as the thin curve in (c).

interference. In contrast, the negative energy difference ε0 < 0 induces destructive quantum
interference. This is the reason for the new resonant PAT pattern shown in figure 4(b). This
explanation can be further substantiated by the fact that the application of the magnetic fluxes
will change the interference fashion, and thus modify the photocurrentbehaviour. In figure 4(c)
the calculated photocurrent is plotted for a given magnetic flux ϕ = π . An amazing finding is
that the photocurrent becomes very similar to the result of the series-coupled QDs, except with
a reduced magnitude. Recalling that the periodicity of the AB oscillation is 4π in the presence
of nonzero interdot hopping as pointed out in the above subsection, it is easy to imagine
that we will obtain the opposite photoresponse to the situation depicted in figure 4(b) if the
renormalized magnetic flux is set to be 2π . The numerical results are plotted in figure 4(d). It
is obvious that the negative branch of the resonant PAT peaks rises but the positive one declines.

In the following, we study in detail what actually happens for the reduced satellite peaks
in the photoresponse stationary current by analysing the evolution of the resonant PAT peaks
as a function of the energy difference ε0 for different ratios of rates 
′/
 and renormalized
magnetic fluxes ϕ at a given frequency of the applied irradiation (it must be bigger than or equal
to 2tc). We plot the calculated results in figure 5. Figure 5(a) is for the frequency of � = 3tc
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and several rate ratios in the absence of magnetic field. We can observe more clearly that the
two PAT peaks are always located at the points ε± = ±√

�2 − 4t2
c irrespective of whether the

additional pathway is switched on or not. As the rate of the additional pathway is rising, the
peak located at positive position ε+ increasingly heightens and the ε− peak decreases. But the
shapes of peaks remain similar to those of 
′ = 0, in which case the two peaks are entirely
identical and have a Lorentzian line shape near the resonance point ε± as revealed in [10], until
a stronger rate of the additional pathway 
′/
 = 0.25. For this maximum rate considered
here, the photocurrent is displayed as a negative dip with very small amplitude instead of a
peak. It can be approximated by a Fano line shape. This behaviour has a similar interpretation
to those of the linear conductance and density of states when the configuration changes from
series to parallel [9]. The interfering of two tunnelling channels opens prominent perspectives
for the Fano effect, i.e., asymmetric line shape of the current at the resonant point. In addition,
the smaller frequency of irradiation leads to the appearance of the dip in photocurrent more
easily (at a smaller rate 
′). Therefore, the Fano line shape can be observed more clearly at
� = 2tc as shown in figure 5(c).

The effect of the magnetic field on the photoresponse can be clearly observed from
figures 5(b) and (c). When the renormalized magnetic flux ϕ is equal to π , the Fano line shape
of the resonant PAT peak completely changes back to the conventional Lorentzian shape if the
resonant condition is satisfied. Finally, we conclude that for the moderate ratios of rates 
′/


and frequencies of irradiation, the photoresponse of the considered system expresses itself
from the PAT Lorentzian peak to the PAT Fano peak by tuning the magnetic field threaded
inside this interferometer.

4. Conclusion

In summary, we have presented the quantum rate equations in the sequential tunnelling regime
by means of the nonequilibrium Green function for a mesoscopic AB ring with two tunnelling-
coupled QDs embedded in the two arms. Employing this set of quantum rate equations,
we calculated the AB oscillation current, the temporal evolution of the electron-occupation
probabilities in the two QDs, and the dc photocurrent as the photoresponse in the presence of a
weak irradiation, at zero temperature and large bias voltage between the source and the drain.

Our numerical studies show that the permission of hopping between the two dots changes
the AB oscillation period to 4π in comparison to the conventional 2π period oscillation
observed in the typical AB effect. On the other hand, we find that the small t oscillation
of the electron-occupation probabilities is also established in the two QDs, with a damping
amplitude controlled by the asymmetry of the parallel configuration. When the configuration
is completely symmetrical the small t oscillation is totally destroyed. Interestingly, this
oscillation behaviour is reobtained if we vary the enclosed magnetic flux due to the interference
effect.

Finally, we have evaluated in detail the dc transport through the parallel-coupled QDs
subject to a small external harmonic irradiation. It is found that, as in the series-coupled
QDs, the photocurrent of this system exhibits extra resonant peaks when the frequency of
the external signal matches the energy difference between the discrete states. Moreover, one
branch of the PAT peaks in the photocurrent is enhanced, while another branch is suppressed,
which is dependent on the enclosed magnetic flux. This behaviour is a consequence of quantum
interference between the different pathways electrons can pass through, and does not exist for
series-coupled QDs, where only one pathway exists. For some appropriate rate ratios 
′/


and frequencies of signal �, the PAT peaks of photocurrent are composed of Lorentzian and
Fano line shapes at the resonant points, respectively, which can also be controlled by applying
magnetic fields.
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In this paper, we study the time-dependent resonant tunnelling through double QDs in a
parallel configuration. This device is receiving wide attention in theoretical and experimental
investigations at present, because its tunability makes it suitable for further applications in
quantum computation and quantum information. We hope our theoretical results about the
novel PAT properties can stimulate experimental studies on this particular problem.
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[3] Holleitner A W, Blick R H, Hüttel A K, Eberl K and Kotthaus J P 2002 Science 297 70
[4] Chen J C, Chang A M and Melloch M R 2003 Preprint cond-mat/0305289
[5] Loss D and Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[6] König J and Gefen Y 2002 Phys. Rev. B 65 45316
[7] Kubala B and König J 2002 Phys. Rev. B 65 245301
[8] Shahbazyan T V and Raikh M E 1994 Phys. Rev. B 49 17123
[9] Ladrón de Guevara M L, Claro F and Orellana P A 2003 Phys. Rev. B 67 195335

[10] Stoof T H and Nazarov Yu V 1996 Phys. Rev. B 53 1050
[11] Hazelzet B L, Wegewijs M R, Stoof T H and Nazarov Yu V 2001 Phys. Rev. B 63 165313
[12] For review, see van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and

Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[13] Dong B, Cui H L and Lei X L 2004 Phys. Rev. B 69 35324
[14] Ma J, Dong B and Lei X L 2003 Eur. Phys. J. B 36 599
[15] Langreth D C 1976 Linear and Nonlinear Electron Transport in Solids (Nato ASI Series B vol 17) ed

J T Devreese and V E Van Doren (New York: Plenum)
[16] Davies J H, Hershfield S, Hyldgaard P and Wilkins J W 1993 Phys. Rev. B 47 4603
[17] Jiang Z T, You J Q, Bain S B and Zheng H Z 2002 Phys. Rev. B 66 205306
[18] Marquardt F and Bruder C 2003 Preprint cond-mat/0303397
[19] Gurvitz S A and Prager Ya S 1996 Phys. Rev. B 53 15932

Gurvitz S A 1998 Phys. Rev. B 57 6602
[20] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512


